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Abstract 

The study of meteorological variables is imperative due to their usefulness in our daily 

activities. Climate change which is now a global issue has received considerable large 

volume of research owing to the fact that its effects cut across all aspects of life. It is 

generally known that the effects of climatic change pose a great threat to agricultural 

activities in Africa continent and the world at large. Temperature and relative humidity are 

inversely related and this inverse relationship as investigated using real life data shows its 

devastating effect on the environment if neglected without urgent control measure. Hence, 

this study investigates the relationship between temperature and relative humidity using 

the beta kernel function with the asymptotic mean integrated squared error (AMISE) as the 

criterion function. The results of the study using real data reveals that temperature and 

relative humidity greatly determine climatic fluctuations which can adversely affect the 

environment. 

 

Key Words: Bandwidth, Climate change, Density, Humidity, Kernel, Temperature 

 

Introduction  

Human activities are dependent on all 
the weather variables. Agricultural 
activities rely largely on the relationship 
between some climatic variables for 
quality or maximum yield. Due to the 
importance of agricultural products to 
mankind, efforts are being made globally 
to curb the activities that could result in 
climate change (Smith, 2000). A study of 
the effects of climate change was 
conducted on Near East North Africa 
(NENA) where the agricultural activities 

and livelihoods of people within the 
countries in the region were critically 
examined with emphasis on small-scale 
farming by Food and Agriculture 
Organization of the United Nations in 
Cairo, Egypt (Lewis et al., 2018; 
Nwankwo and Ukhurebor, 2019). 

Apart from the direct effects of climate 
change on agricultural products, the 
mobility of the products and human 
resources to required markets can also be 
hampered by climatic fluctuations. The 
interactions between temperature and 
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humidity were investigated in relation 
with cloud cover using aircraft variables to 
verify if temperature and humidity 
changes are correlated and the results 
revealed negative correlations between the 
variables (Tompkins, 2003). Globally, the 
effects of climate change can affect access 
to food which directly affects the 
Sustainable Development Goals (SDGs) 
of poverty and hunger eradication. A large 
quantity of food is transported via 
waterway across the globe, during which 
there are changes in the weather and this 
could directly affect the waterway, 
invariably cause difficulties in 
transporting such products if there are no 
alternatives routes, and if there are 
transportation problems, the volume of 
products to be exported to the 
international market will be affected 
hence; the global prices for food will also 
be affected drastically (Brown et al., 
2015). 

Climatic fluctuations are not just a 
threat to the growth and development of 
the economic and agricultural sector of 
nations but its effects can be felt in the 
entire human population. The human race 
now faces new climatic fluctuations at an 
exponential rate in their environment in 
which adaptability has not been fully 
developed (Adejuwon, 2004). The spread 
of diseases in animal and humans can also 
be attributed to changes in climatic 
variables; hence adequate measures 
should be taken to address this menace. 
One of the important climatic variables is 
rainfall and insufficient amount of rainfall 
could result in degeneration and 
deforestation of land as a resource leading 
to desertification. Due to the adverse 
effects of climatic fluctuations on human 
race and its environment, it is regarded as 
the severest challenge confronting the 
world now and its effects is worse than the 

activities of terrorists globally (Niggol and 
Mendelson, 2008).  

Climatic variables should be properly 
investigated so that inherent structures can 
be identified and decisions can be made on 
reducing its effects on the environment. 
Orderliness of climatic variables is 
fundamental to curbing its activities; 
hence statistical analysis of some climatic 
data is the focus of this work. Data 
analysis and estimation has broad spectral 
in applicability virtually in all fields of 
studies. Analysis of data could be for 
visualization, exploratory and estimation 
purposes for communication of the 
findings about the observations. The 
visualization of data involves 
representation of the data graphically in 
order to identify trends and patterns that 
are present in the data. In exploratory 
analysis, the data are subjected to critical 
examination with the aid of some 
statistical tools while the data estimation 
stage uses the actual data values in 
predicting or forecasting a future 
occurrence (Bobadoye et al., 2020).   

Accurate predictions of climatic 
variables with the application of statistical 
tools could prevent disasters that are 
connected to climate change. Predictions 
or forecasting using statistical tools 
involves density estimation which is the 
construction of probability estimates 
using the data either from a known 
probability distribution or unknown 
distribution. If the observations are 
assumed to be members of a known 
probability distribution, then the 
estimation technique is parametric density 
estimation. In this estimation method, 
prior knowledge of the data is required 
and it is only the parameter of the 
distribution that will be estimated. On the 
other hand, nonparametric approach does 
not make any assumption about the 
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distribution of the set of observations but 
the observations are subjected to self-
examination. Nonparametric estimation 
gives a better approach to statistical 
analysis of data due to its ability to capture 
the structures of the underlying 
distribution. One of the features of 
nonparametric estimation is that they are 
useful exploratory and visualization tools 
in statistical analysis. This advantages 
account for nonparametric models as a 
better choice of robust and accurate 
statistical tools (Hansen, 2019). 
Nonparametric density estimation is of 
wide applicability in multivariate analysis 
of data for visualization and exploratory 
purposes especially for observations 
whose prior information may not be 
known (Siloko et al., 2019a). Due to 
constant variations in weather variables, 
the nonparametric approach will be 
employed to avoid the assumption of 
imposition of distributional property on 
the observations.   

This paper focused on density 
estimation with emphasis on weather 
variables using the beta kernel functions 
for accurate meteorological information. 
The analysis is based on bivariate kernels 
only since it considers two weather 
variables. The general form of the kernel 
estimator is presented, and the beta 
polynomial kernel functions are 
discussed. The smoothing parameters and 
kernel estimates of the bivariate product 
kernel using real data were obtained and 
the kernel performances were evaluated 
with the asymptotic mean integrated 
squared error. The aim of this study is to 
investigate the relationship between 
temperature and relative humidity using 
the beta kernel function and their effects 
on the environment. 
 

 

Mathematical Formulation 
The kernel density estimator is a 

probability density function with 
applications in exploratory data analysis 
and data visualization (Rosenblatt, 1956; 
Parzen, 1962). It is also of indirect 
application in discriminant analysis, 
goodness-of-fit testing, hazard rate 
estimation and other statistical related 
estimation techniques (Raykar et al., 
2015). The prominence of kernel 
estimators in nonparametric density 
estimation is attributed to their simplicity 
and computational efficiency. As a 
standardized weighting function, the 
univariate kernel density estimator is 

���x� = 1�ℎ
 � �

��� �x − ��ℎ
 �,                                            �1� 

 

where ��∙� is a kernel function, � is 
sample size, ℎ
 > 0 is bandwidth (also 
called smoothing parameter), x is range of 
the observations and �� is the set of 
observations. Usually, the kernel function 
is a non-negative function that must 
satisfy the following conditions 
 � ��x��x = 1, � x��x��x = 0 and � x���x��x ≠ 0. �2�  
 

The implication of the first condition 
in Equation (2) in kernel method is that 
every kernel function must integrate to 
unity that is one; hence most kernel 
functions are probability density 
functions. The other conditions imply that 
the average of the kernel is zero while the 

variance of the kernel #���� is not zero 
(Siloko et al., 2020a; Scott, 2015).  

Density estimation using the kernel 
estimator involves the smoothing 
parameter which plays a significant role in 
the estimation process; hence it is 
regarded as a resolution factor when 
viewing observations. The evaluation of 
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the kernel estimator is strictly dependent 
on the smoothing parameter; therefore, its 
appropriate choices are very imperative. 
Smoothing parameter selection is the 
major problem confronting the 
implementation of kernel density 
estimation. There are plethora smoothing 
parameter selectors but no universally 
acceptable selector for all situations; 
hence, smoothing parameter selections is 
a grey area in kernel density estimation. 
The problem of smoothing parameter 
selection in univariate kernel is not as 
complex as in the multivariate kernel 
estimation with different forms of 
parameterizations (Siloko et al., 2018). 
The general multivariate form of the 
kernel estimator in Equation (1) with a 
single bandwidth is of the form 

���x� = 1�ℎ
$ � �

��� �x − X�ℎ
 �,                              �3� 

 

where � is dimension of the kernel function. 
The multi-dimensional kernel also satisfies 

the conditions in Equation (2) and with the 
assumption of its contours being spherically 
symmetric. This multivariate kernel 
estimator is advantageous because the 
formulas for the asymptotic mean integrated 
squared error and the optimal smoothing 
parameter value can be obtained unlike other 
complex forms of parameterizations without 
explicit optimal bandwidth formula. 

The two-dimensional kernel estimators 
can be easily obtained from the general form 
using the product techniques that applies 
different smoothing parameter for each 
dimension (Sain et al., 1994). The bivariate 
product kernel uses the product of two 
univariate kernel but with different level of 
smoothing in each axis. In bivariate kernel 

density estimation, x , y are random 
variables having joint density function ��x , y�, with  X� , Y� , ) = 1, 2, … , �  as set of 
observations, where � is the sample size. 
The bivariate product kernel density 
estimator is of the form 

 

���x , y� = 1�ℎ
ℎ+ � �

��� ,x − X�ℎ
 , y − Y�ℎ+ - = 1� ℎ
ℎ+ �  �


��� �x − X�ℎ
 � � ,y − Y�ℎ+ -,           �4/� 

 

where ℎ
 > 0  and ℎ+ > 0 are smoothing 

parameters in X and Y directions, x and y are 
ranges of the variables in the different axes 

and ��x , y� is a bivariate kernel function, 
which is the product of two univariate 
kernels. The bivariate product kernel is 
mostly beneficial if there are variations in 
the scales of the observations in the 
respective axes or directions. The bivariate 
kernel bridges the gap between the 

univariate and other higher dimensional 
kernel estimators. An advantage of the 
bivariate kernel estimators is that their 
estimates are simple to understand and 
interpret, either as surface plots or contour 
plots and also a useful tool for data 
exploratory analysis and data visualization 
(Silverman, 2018). The general form of the 
multivariate product kernel is 
 

���x� = �0� 12 ℎ3
$

3�� 4
0�

� �

��� �x� − X��ℎ� , x� − X��ℎ� , … , x$ − X�$ℎ$ �,                                 �45� 

 

where ℎ3  are the smoothing parameter for the different axes and � is the dimension of the 

kernel. 
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The Beta Polynomial Kernel Functions 
There is plethora of kernel estimators, 

however; the beta polynomial kernel whose 
degree of differentiability is dependent on 
the power of the polynomial is our focus 
because its limiting case is the popular 
Gaussian kernel that has wide applications. 
The beta polynomial kernels are probability 
density function with their general form 
given by 

�6�7� = �28 + 1�!2�6;��8!�� �1 − 7��6,                         �5� 

where 8 = 0, 1, 2, … , ∞  is regarded as its 
power and 7 takes value within the interval −1 ≤ 7 ≤ 1. Since the beta kernel functions 
are probability density functions, they are 
usually evaluated within this 

interval ?−1,   1@. The values of 8 that ranges 
from 0 to 3 will produce Uniform, 
Epanechnikov, Biweight and Triweight 
kernels with the uniform kernel being the 
simplest kernel, while at its limiting case the 
resulting kernel is the Gaussian kernel also 
known as the normal kernel. The limiting 

case simply means when the value of 8 tends 
to infinity (Siloko et al., 2019b). The 

corresponding kernel functions for  8 = 1,2, and 3 known as the Epanechnikov, 
Biweight and Triweight kernel are as 
follows. 

���7� = 34 �1 − 7��                                         �6� 

 ���7� = 1516 �1 − 7���                                    �7� 

 

�C�7� = 3532 �1 − 7��C                                    �8� 

As the value of 8 tends to infinity, the 
resulting kernel is the popular Gaussian 
kernel given by 

�∅�7� = 1√2G  Hx8 I− JK� L.                          �9� 

The Epanechnikov, Biweight, and 
Triweight kernel functions are of wider 

applications especially, the Epanechnikov 
kernel which is the optimal kernel that is 
used in computation of the efficiency of 
other kernel functions of the family 

In the product method, several univariate 
kernels are multiplied to obtain the 
corresponding multivariate kernel and are of 
the form 

�6�7� = N� 2�1 − 7���6,�
���                             �10� 

 

where N = ��6;��!�KOPQ�6!�K  is the normalization 

constant of the kernel function. The 
bivariate beta kernel functions can simply 
be expressed as �6�7� = N��1 − 7���6�1 − 7���6                      �11� 

 

The corresponding bivariate Epanechnikov, 
Biweight and Triweight kernel are 

���7� = 916 �1 − 7����1 − 7���                           �12� 

 ���7� = 225256 �1 − 7�����1 − 7����                    �13� 

 �C�7� = 12251024 �1 − 7���C�1 − 7���C                  �14� 

 

Again, at the limiting case, the bivariate 
Gaussian kernel is of the form 

�∅�7� = 12π exp ,− 7�� + 7��2 -                          �15� 

The Gaussian kernel is very fundamental 
in density estimation because it produces 
smooth density estimates and the 
mathematical computations can be explicitly 
expressed. It is also continuously 
differentiable and possesses derivatives of 
all order which supported its wide uses in 
density estimation unlike other members of 
the beta family. 
Performance Measure of Kernel Estimator 

The performance of the kernel estimator 
is dependent on the smoothing parameter 
and not the kernel function; therefore, 
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appropriate choices are imperative. One of 
the optimality criteria functions in kernel 
density estimation with regards to dimension 
is the mean integrated squared error with its 
components given by  

 UVWX I���x�L = � Y/Z I���x�L �x + � [)/\� I���x�L �x.   �16� 

 

There is trade-off between the 
components of the MISE, the bias can be 
reduced while the variance increases and 
vice versa, if the magnitude of the smoothing 
parameter varies. As a result of the 
importance of the smoothing in performance 
evaluation of the kernel estimator, 
appropriate criterion function that regulates 
the contributions of both components must 
be employed (Siloko and Siloko, 2019). The 
approximate form of Equation (16) is the 

asymptotic mean integrated squared error 
which produces the integrated variance and 
the integrated squared bias given by 

 

NUVWX I���x�L = ]����ℎ
 + ℎ
̂4 #��K�� ]��`�x��,    �17� 

 

where ]��� is roughness of kernel, #�����  
is variance of kernel while ]��`�x�� = a �`�x���x is the roughness of the 
unknown density function. The smoothing 
parameter with the minimum AMISE in 
Equation (17) in terms of dimension is   
ℎ
0bcdef = g ]���#�����]h�`�x�i j

I �^;$L × �0� �^;$�⁄ .   �18� 

 
 

 

where � is dimension of the kernel function. The multivariate asymptotic mean integrated 
squared error with the product kernel estimator is 
 

AMISE I���x�L = ]���$�ℎ�ℎ�, … , ℎ$ + 14 ℎ3̂ #����� � 7Z� h∇���x�i�x     = ]���$�ℎ�ℎ�, … , ℎ$ + 14 ℎ3̂ #�����]h∇���x�i         �19� 

 

where  ]��� = a ���x��x  is roughness of kernel, #����� is variance of kernel,  ]h∇���x�i = a 7Z� h∇���x�i�x is roughness of the function, 7Z is trace of a matrix, �  is 

sample size, ℎ�, ℎ�, … , ℎ$  are the smoothing parameters for each dimension, �  is dimension 

of kernel and ∇���x� is Hessian matrix (matrix of second partial derivatives) of the function. 
The corresponding smoothing parameter with the minimum AMISE value is   
 

stuvwx = y �]���$
#����� ]h∇���x�izI �$;^L × �0I �$;^L                                                                                                                      �20� 

 

As noted above, Equation (18) and 
Equation (20) depend on the second 
derivative of the unknown function, that 

is ]��`�x��  and  ]h∇���x�i 

respectively, therefore it will be difficult 
to evaluate without the knowledge of the 

true density function ��x�. Several 
researches and suggestions have been 
made about the value of  ]��`�x��  and  ]h∇���x�i for different 

kernel functions. We obtain the value of 

the roughness of the function,  ]h∇���x�i 

with reference to the Epanechnikov, 
Biweight, and Gaussian functions. 
Data Analysis 

The statistical properties of the 
weather variable were obtained with their 
informative graphical displays also 
presented in bivariate form with the aid of 
Mathematica ver.12 software, 
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www.wolfram.com/Mathematica. This 
analysis aims at exploring the general 
distributional properties of the weather 
observations and obtaining the necessary 
information for decision making and 
possibly future predictions. The beta 
kernel functions employed in this analysis 
are Epanechnikov, Biweight, and 
Gaussian kernel functions. The smoothing 
parameter values that minimize the 
AMISE of the data were obtained with 
reference to their respective distributions. 
 

Result and Discussion 

The weather data investigated is the 
ERA-Interim average daily 
meteorological data that is made up of 365 
observations on two variables namely; 
temperature in degree Celsius and relative 
humidity in percentages (Dee et al., 2011; 
Ukhurebor and Abiodun, 2018 Ukhurebor 
and Azi, 2019). The two variables were 
the daily records of temperature and 
relative humidity for the year 2018. The 
analysis of these data addresses the 
relationship between temperature and 
relative humidity and their direct impact 
on the environment. The set of 
observations were standardized to ensure 
that there are no variations in their ranges 
(Ukhurebor and Odesanya, 2019; Siloko 
et al., 2018; Siloko et al., 2020b). 
Standardization of data is of great 
importance in multivariate analysis 
particularly in kernel density estimation 
where visualization of data structure is the 
primary goal. It should be noted that 
standardization of data during analysis 
does not affect the inherent features of the 
data set. The bivariate kernel estimates of 
the weather variables using the bivariate 
product kernel are in Figure 1, Figure 2 
and Figure 3 using Epanechnikov, 
Biweight, and Gaussian kernel functions. 
The smoothing parameter and the 

asymptotic mean integrated squared error 
(AMISE) values are in Table 1. The 
Epanechnikov being the optimal kernel 
produce the smallest value of the AMISE 
amongst the three kernel functions 
examined. Again, the smoothing 
parameter increases as the power of the 
kernel increase as seen in Table 1 while 
the Normal kernel produced the largest 
value of the AMISE. In kernel method, 
performance is usually attributed to the 
ability of the kernel function in producing 
the smallest AMISE using the smoothing 
parameter (Jarnicka, 2009; Siloko et al., 
2017). The results in Table 1 show that the 
Epanechnikov kernel outperformed the 
Biweight and Gaussian kernels due to its 
production of the smallest AMISE value 
and that supports its optimality with 
respect to the AMISE as a criterion 
function.  

The bivariate kernel estimates of the 
weather variables clearly show that the 
data are multimodal which indicates that 
the variables are inversely related. The 
multimodality of the kernel estimates of 
the observations implies the direct 
numerous effects of the variables on 
human activities and the environment. The 
Gaussian kernel produces smooth kernel 
estimates as seen in Figure 3 but despite 
the noise in the Epanechnikov and 
Biweight estimates as noticed in Figure 1 
and Figure 2, the clear effect of 
temperature and relative humidity is 
displayed statistically. The effects of the 
interaction of temperature and relative 
humidity investigated are with high 
probability value as seen in the kernel 
estimates. The probability value ranges 
between 0 and 0.14 which means any 
human action that can be affected by these 
variables in the environment if not 
immediately controlled will result in 
disaster to mankind.
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Fig. 1a: Surface plot of Epanechnikov bivariate kernel density estimate of weather data 

 
Fig. 1b: Contour plot of Epanechnikov bivariate kernel density estimate of weather data  
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Fig. 2a: Surface plot of Biweight bivariate kernel density estimate of weather data  
 

 
Fig. 2b: Contour plot of Biweight bivariate kernel density estimate of weather data  
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Fig. 3a: Surface plot of Normal bivariate kernel density estimate of weather data  
 

 
Fig. 3b: Contour plot of Normal bivariate kernel density of weather data 
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Table1: Kernel Functions, Smoothing Parameters, Variance, [)/\� and AMISE of the Data 
Kernel Function ℎ
 ℎ+ Variance [)/\� AMISE 

Epanechnikov 0.486475 0.503703 0.00046124 0.00016110 0.00062234 
Biweight 0.451965 0.451834 0.00111163 0.00013969 0.00125132 
Gaussian 0.449998 0.457424 0.00105918 0.00105931 0.00211849 

 

The inverse relationship between the 
studied observations has serious effect on 
man and its environment because an 
increase in relative humidity will result in 
more water in the atmosphere that could 
circulate malodorous molecules from 
bacteria related sources to human. The 
emission of dangerous chemicals into the 
environment is one of the ways by which 
human activities have affected its 
environment adversely because such 
activities could result in increase in 
temperature and reduce the quality of air 
that ultimately leads to death of plants and 
animals. Cardiovascular diseases that 
could lead to death are also connected 
with the observations examined; hence the 
multimodality of the kernel estimates. 
Therefore, maintenance of the 
environment should be our priority so that 
the effects of increase humidity and heat 
due to dirtiness can be avoided.  
 

Conclusion 
Temperature and relative humidity are 

inversely related and this inverse 
relationship as investigated using real life 
data shows its devastating effect on the 
environment if neglected without urgent 
control measure. The probability of their 
interaction is high using the statistical 
tools of nonparametric density estimation. 
Activities that could result in depletion of 
the Ozone layer should be avoided and 
environmentalists should as a matter of 
urgency sensitize the citizenry on the 
importance of urgent need of maintenance 
of the environment. Government at all 
levels in every nation should come up with 

stringent policies that regulate the 
activities of individuals and industries 
towards the maintenance of the 
environment to reduce the effects of 
climatic fluctuations. 
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