
700 

 

Ethiopian Journal of Environmental Studies & Management 16(6): 700 – 719, 2023 

ISSN:1998-0507                  doi: https://ejesm.org/doi/v16i6.5 

Submitted: October 13, 2023                      Accepted: December 18, 2023 

 

ECOLOGICAL AND SYNERGISTIC EVALUATION OF THE NUTRIENT DYNAMICS OF 

THE PRECIPITATION FLUX IN A GUINEA SAVANNA, NORTH-CENTRAL NIGERIA 

 

*OYEYINKA, B.O., OYEDEJI, S. AND FATOBA, P.O. 

Department of Plant Biology, University of Ilorin, Ilorin, 240003, Nigeria 

*Corresponding author: barnabastom@opensci.world 
 

Abstract 

Tropical savannas are widespread, rich in biodiversity, with nutrient cycling being central 

to long-term sustainability of its phytodiversity. Understory precipitation (canopyfall and 

stemflow) and freefall from 13 rainfall episodes were sampled in isolated, naturally 

growing tree stands of Azadirachta indica (A. Juss), Daniella oliveri (Rolfe) Hutch. & Dalziel, 

Parkia biglobosa (Jacq.) Benth, Prosopis africana (Guill. & Perr.) and Vitellaria paradoxa 

(Gaertner) F. Calcium and magnesium were spectrophotometrically analysed, potassium 

was determined with flame photometry, while nitrate-nitrogen and phosphate-

phosphorus were determined via colorimetric titration. Results showed that understory 

precipitation fluxes (canopyfall and stemflow) were predominantly richer in nutrient return 

than the freefall, just as the stemflow was the more nutrient-rich understory precipitation. 

Pearson’s correlation reflected dominant synergistic patterns between canopyfall and 

stemflow, especially for cationic elemental nutrients. It is indicative that extended in-

canopy precipitation residence time, as well as branch and bark tissue leaching-derived 

base content, are synchronizing factors involved in the nutrient enrichment nature of 

canopyfall and stemflow, in terrestrial ecosystems. This study points out the 

agroecological, ecophysiological, and biogeochemical cycling potentials of tropical tree 

cover, understory precipitation flux, and their rapid nutrient supply to tropical ecosystem 

soils. 

 

Key Words: Canopyfall, freefall, Guinea savanna, Nutrient dynamics, Precipitation, 

Stemflow 

 

Introduction 

Nutrient cycling provides an insight 

into the management of vegetation 

growing on low fertility tropical soils 

(Congdon and Herborn, 1993). It is a key 

ecological process which interchanges 

elements through the biotic and 

geochemical aspects of the ecosystem. 

Nutrient cycling essentially involves the 

processes of uptake and storage of 

nutrients in flora tissues and litter 

decomposition, as well as transformation 

of nutrients by the flora and fauna of the 

soil (Foster and Bhatti, 2006). Ecosystem 

stability and optimum functioning is 

propelled by nutrient rate turnover 

(Brasell et al., 1980). Nutrient cycles are 

linked to the hydrological cycle due to the 
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fact that water represents the main solvent 

and transport mechanism of nutrient 

elements from tree stands to the soil 

(Bruijnzeel, 2001; Chuyong et al., 2004). 

According to Newson (1997), nutrient 

wash-off from the leaf and stem of plants 

represents a key vehicle in the nutrient 

return process. The accumulation of dust 

particles on the leaves and branches of 

trees which is transported to the soil via 

the fluxes of throughfall and stemflow is 

a potential source of mineral nutrient and 

nitrogen input (Muoghalu et al., 2000). 

Ecosystem nutrient budgets have been 

developed around the dynamics of 

additions, losses and fluxes as an 

oversight target towards nutrient supply 

sustainability (Laclau et al., 2003). The 

significant interaction of tropical 

vegetation with rainfall is recognized on 

physiological and eco-hydrological bases 

(Marin-Tobin et al., 2000; Iida et al., 
2005). When rain falls on tree canopies, a 

proportion reaches the soil as throughfall 

and stemflow, the rest is retained in the 

canopy and subsequently evaporated, 

water and nutrients are channelled into 

zones around tree trunks (Johnson and 

Lehmann, 2006). Furthermore, water 

fluxes are partitioned into distinct 

pathways by the canopy and root 

segments of tropical trees; thus, 

influencing chemical constitution as well 

as concentration (Bundt et al., 2001). 

Canopyfall describes the process of 

precipitation running through plant 

canopy and is influenced by factors such 

as density of leaf and stem, intensity, and 

duration of precipitation. It is also notable 

that precipitation quantity which passes 

through canopies varies significantly 

based on vegetation forms (Pidwirny, 

2006). 

Stemflow is the partial gross rainfall, 

flowing down along the stems and tree 

trunks and reaching the soil. As an 

ecosystem nutrient flux, stemflow gets 

into the soil around the tree base and in 

effect enables drought-resistant 

mechanisms in trees (Martinez-Meza and 

Whitford, 1996; Levia and Germer, 2015; 

Van Stan and Gordon, 2018). Vegetation 

often modifies the intensity and 

distribution of precipitation falling on and 

through the leaf and trunk. According to 

Pidwirny (2006), vegetation is capable of 

intercepting about 50% of rainfall through 

the leaf. In deciduous trees, the leaves 

generally intercept about 20%-30% of 

rainwater. During a precipitation episode, 

canopy nutrients are leached due to the 

nutrient concentration differential 

between the tree and rainwater (Kopacek 

et al., 2009; Poleto et al., 2021). 

Ecosystem research focus has been 

directed towards net primary production 

(NPP) evaluation, which implies 

quantity of carbon fixed into organic 

matter. Nevertheless, nutrient wash from 

leaves and stem during rain episodes is a 

component source of nutrient return from 

trees to soil (Nye, 1960; Newson, 1997; 

Ward, 2000). Flux element estimation 

from incident rainfall, throughfall and 

stemflow has continued to constitute a 

familiar approach in nutrient budgetary 

analysis overtime (Likens et al., 1977), 

with epiphytic plants and lichens also 

contributing roles in nutrient uptake from 

intercepted precipitation (Houle et al., 
1999; Mendieta-Leiva et al., 2020). 

Savanna biomes are very extensive in 

the Americas, Africa and India (Scholes 

and Hall, 1996), with the interaction 

between nutrient availability and water 

being a key correlational driver of 

savanna ecosystems (Reatto et al., 1998; 
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Bustamante et al., 2006). Deep-rooted 

trees exert significant effects on 

ecosystem productivity through nutrient 

cycling (Chang and Matzner, 2000; Anka 

and Sanda, 2020), because they explore 

soil pools that are ordinarily inaccessible to 

shallow-rooted species. The tree stands 

from the five tree species in this study 

(Azadirachta indica, Daniella oliveri, 
Parkia biglobosa, Prosopis africana and 

Vitellaria paradoxa) have notably 

coarse, rough-patterned bark surfaces, 

which are potential factors for 

enhanced stemflow precipitation, 

enabling water to run or trickle along the 

bark in more distinct channels. It is with 

the foregoing that this study was aimed at 

determining cationic and anionic nutrient 

returns, from the understory precipitation 

fluxes of the indicator tree species, as 

well as the co-relationship of precipitation 

fluxes in the ecosystem. 

 

Methodology 

Study Area 

The study was conducted in 

University of Ilorin campus (8.4912oN, 

4.5950oE) Ilorin, in the Guinea Savanna 

belt of Nigeria (Oyedeji et al., 2021) 

(Figure 1). The study area is an 

undisturbed woodland/grassland 

characterized by rainy (Apri l  -  

October)  and dry (November -  

March) seasons (Oyedeji et al., 2014), 

with annual rainfall of 1,200mm 

(Olaniran, 2002), 75-80% relative 

humidity, and an average annual 

temperature of 33oC-34oC (Ajadi et al., 
2011). The natural vegetation is dominated 

by grass cover, with significant tree cover 

composition dominated by deciduous tree 

species such as A. indica, D. oliveri, P. 
biglobosa, P. africana and V. paradoxa, in 

sparsely distributed pattern (Oyedeji et al., 
2014). Other relatively common species 

include Terminalia catappa, Delonix 
regia, Gmelina arborea and Mangifera 
indica (Babalola and Raji, 2016; Oyedeji 

et al., 2021). The study area also has 

expansive vicinity areas characterized by 

Tectona grandis and Jatropha curcas 
plantations. Sparse distribution of rocky 

outcrops is also evident around the study 

area. 

Experimental Design 

Ten isolated tree stands (two stands per 

species) were used in sampling canopyfall 

into sterile, funnelled containers, while 

the stemflow was sampled via sterile 

tubes channelled into funnelled 

containers. 13 rainfall episodes were 

sampled in this study across the rainy 

months of May to July. Furthermore, a 

control precipitation group (freefall) was 

also sampled in triplicate per rainfall 

episode. The experiment was designed on 

the fundamental basis of tree stand 

isolation, thereby ensuring homogeneity 

of precipitation samples obtained from 

each tree stand.
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Fig. 1: Map of the sampling points within the Study Area 

 

Precipitation Sample Collection 

Canopyfall precipitation samples were 

collected in the study site with two 

funnelled, plastic collectors on the ground, 

beneath each tree canopy. Stemflow 

samples were collected through the 

interception of rainwater running along 

each tree trunk near the ground, via a 

mounted sterile, flexible interception 

tube, channelled into a clean two-litre 

plastic container. Freefall (open rain) 

samples were collected in open space 

from direct rainfall with three funneled 

plastic collectors. Precipitation samples 

were collected after each of the 13 rainfall 

episodes into labelled sampling bottles, 

and stored in cold condition (4oC), for 

laboratory analysis. 

Digestion and Laboratory Analysis 

Nitric-Perchloric acid (HNO3-

HClO4) digestion method was used as 

described by AOAC (1990). 5 mL of each 

water sample (canopyfall, stemflow and 

freefall) was added into a conical flask. 10 

mL of trioxonitrate V acid (HNO3) was 

then added carefully, after which 7.5 mL of 

conc. perchloric acid (HClO4) was added. 

The mixture was then filtered with a 

Whatman Filter Paper No. 42 (125 mm). 

A clear solution (digestate) was obtained 

and collected into 60 mL bottles for 

analysis. Elemental nutrient analysis for 

calcium and magnesium was 

spectrophotometrically determined using 

the Atomic Absorption 

Spectrophotometer (210 VPG, Bulk 
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Scientific Inc., Norwalk, U.S.A), while 

potassium was analysed with the Flame 

Photometer (PFP 7, JENWAY, United 

Kingdom). Nitrate-nitrogen and 

phosphate-phosphorus were 

quantitatively determined using 

colorimetric titration. 

Data Analysis 

Data obtained were subjected to one-

way Analysis of Variance and Fischer’s 

least significant difference mean 

separation using the MINITAB statistical 

software. Statistical tests were carried out 

at 0.05 confidence level. Understory 

precipitation flux (canopyfall and 

stemflow) and freefall data for each 

nutrient, was subjected to the Pearson’s 

correlational (r) analysis at p≤ 0.05. 

 

Results 

Rainfall was observed across the 

months May to July, from which 

precipitation samples were collected. 

Calcium concentrations in the canopyfall 

of A. indica (1.96 ± 0.55 mg/L), P. 
biglobosa (1.79 ± 0.71 mg/L), P. africana 
(1.88 ± 0.58 mg/L) and V. paradoxa 
(2.24 ± 0.92 mg/L) were higher than that 

of the freefall (1.74 ± 0.39 mg/L). 

Moreover, the stemflow had higher 

calcium concentration than canopyfall in 

three (D. oliveri, P. biglobosa and V. 
paradoxa) of the five tree species (Figure 

2 to 6). 

Potassium concentration in the 

canopyfall of A. indica (2.08 ± 1.60 

mg/L), D. oliveri (1.73 ± 1.75 mg/L), P. 
biglobosa (1.92 ± 1.41 mg/L) and 

stemflow of all the five tree species were 

higher that of the freefall (1.71 ± 1.66 

mg/L). Notably, stemflow had higher 

potassium concentration than canopyfall 

across all five tree species (A. indica, D. 
oliveri, P. biglobosa, P. africana and V. 
paradoxa) (Figure 2 to 6). 

Magnesium concentration in the 

canopyfall of A. indica (1.22 ± 0.89 

mg/L), P. africana (1.21 ± 0.92 mg/L), V. 
paradoxa (1.29 ± 0.93 mg/L) and 

stemflow of D. oliveri (1.43 ± 0.99 

mg/L), P. biglobosa (1.21 ± 0.91 mg/L), 

P. africana (1.37 ± 1.03 mg/L), and V. 
paradoxa (1.35 ± 1.07 mg/L) were higher 

than the magnesium concentration in the 

freefall (1.18 ± 0.90 mg/mL). 

Furthermore, stemflow had higher 

magnesium concentration than canopyfall 

in four of the five tree species, except A. 
indica (Figure 2 to 6). 

Nitrate-nitrogen concentration in the 

canopyfall and stemflow across all the 

five tree species (0.44 ± 0.24 mg/L to 1.57 

± 0.76 mg/L) were higher than that of the 

freefall (0.23 ± 0.17 mg/L). Likewise, 

canopyfall had higher nitrate-nitrogen 

concentration than stemflow in three 

(P. biglobosa, P. africana and V. 
paradoxa) of the five species (Figure 2 to 

6). 

Phosphate-phosphorus concentration in 

the canopyfall of all five tree species (0.02 

± 0.01 mg/L to 0.02 ± 0.02 mg/L) and the 

stemflow of A. indica (0.02 ± 0.01 mg/L), 

D. oliveri (0.06 ± 0.04 mg/L), P. biglobosa 
(0.02 ± 0.02 mg/L), P. africana (0.04 ± 

0.03 mg/L) were higher than the 

concentration in the freefall (0.01 ± 0.01 

mg/L), while V. paradoxa stemflow 

contained comparable phosphate-

phosphorus concentrations with the 

freefall (0.01 ± 0.01 mg/L) (Figure 2 to 6). 

Correlational Analysis of Understory 

Precipitation fluxes (Canopyfall & 

Stemflow), and Freefall 

Pearson’s correlation (r) showed that 

for calcium nutrient, the understory 

precipitation fluxes (canopyfall and 

stemflow) had consistent inverse 

relationship with freefall in four tree 

species (Table 1). In A. indica however, 

canopyfall and stemflow showed negative 
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to weak positive correlation respectively, 

with freefall. Notably, between canopyfall 

and stemflow there was moderate positive 

(A. indica), significant moderate positive 

(D. oliveri), and significant strong 

positive correlations (P. biglobosa, P. 
africana and V. paradoxa) respectively 

(Table 1). 

For potassium nutrient, canopyfall and 

stemflow had significant strong positive 

correlation with freefall in four of the five 

tree species, with the exception of the 

stemflow of A. indica with a weak 

positive correlation with freefall (Table 2). 

Equally, canopyfall had significant strong 

correlation with stemflow in four of five 

tree species, except the moderate positive 

correlation in A. indica (Table 2). 

For magnesium nutrient, canopyfall and 

stemflow had significantly strong 

correlations with freefall in all the five tree 

species (Table 3). Similarly, within the 

understory precipitation fluxes, there was 

significantly positive correlation, across 

all five tree species (Table 3). 

For the anionic nutrients nitrate-

nitrogen and phosphate-phosphorus, 

diverse and multidirectional correlational 

patterns were generally observed between 

the canopyfall, stemflow and freefall, 

ranging from the predominant weak 

positive correlation to negative and 

moderate positive correlations (Table 4 

and 5). 
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Fig. 2: Nutrient dynamics of understory precipitation (canopyfall, stemflow) samples of 

A. indica, and freefall 
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Fig. 3: Nutrient dynamics of understory precipitation (canopyfall, stemflow) samples of  

D. oliveri, and Freefall 
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Fig. 4: Nutrient dynamics of understory precipitation (canopyfall, stemflow) samples of  

P. biglobosa, and freefall 
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Fig. 5: Nutrient dynamics of understory precipitation (canopyfall, stemflow) samples 

of P. africana, and freefall 
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Fig. 6: Nutrient dynamics of understory precipitation (canopyfall, stemflow) samples 

of V. paradoxa, and freefall 
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Table 1: Pearson’s correlational analysis (r) between understory precipitation flux (Canopyfall & Stemflow), and Freefall for 

calcium nutrient 
 C1   C2 C3 C4 C5 S1 S2 S3 S4 S5 

C2 0.914**          

C3 0.714** 0.479         

C4 0.956** 0.851** 0.775**        

C5 0.942** 0.827** 0.748** 0.988**       

S1 0.507 0.391 0.534 0.458 0.355      

S2 0.793** 0.623* 0.784** 0.850** 0.867** 0.267     

S3 0.681** 0.478 0.747** 0.811** 0.825** 0.200 0.893**    

S4 0.930** 0.813** 0.771** 0.948** 0.907** 0.696** 0.752** 0.706**   

S5 0.831** 0.657* 0.878** 0.862** 0.808** 0.761** 0.808** 0.714** 0.932**  

FF -0.217 -0.205 -0.251 -0.238 -0.292 0.004 -0.099 -0.035 -0.199 -0.126 

**Correlation is significant at ≤ 0.01; *correlation is significant at ≤ 0.05. C1= Canopyfall (A. indica); C2= Canopyfall (D. oliveri); C3= Canopyfall (P. 
biglobosa); C4= Canopyfall (P. africana); C5= Canopyfall (V. paradoxa); S1= Stemflow (A. indica); S2= Stemflow (D. oliveri); S3= Stemflow (P. 
biglobosa); S4=Stemflow (P. africana); S5= Stemflow (V. paradoxa); FF= Freefall 

 

Table 2: Pearson’s correlational analysis (r) between understory precipitation flux (Canopyfall & Stemflow), and Freefall for 

potassium nutrient 
 C1   C2 C3 C4 C5 S1 S2 S3 S4 S5 

C2 0.914**          

C3 0.714** 0.479         

C4 0.956** 0.851** 0.775**        

C5 0.942** 0.827** 0.748** 0.988**       

S1 0.507 0.391 0.534 0.458 0.355      

S2 0.793** 0.623* 0.784** 0.850** 0.867** 0.267     

S3 0.681** 0.478 0.747** 0.811** 0.825** 0.200 0.893**    

S4 0.930** 0.813** 0.771** 0.948** 0.907** 0.696** 0.752** 0.706**   

S5 0.831** 0.657* 0.878** 0.862** 0.808** 0.761** 0.808** 0.714** 0.932**  

FF 0.773** 0.608* 0.766** 0.851** 0.854** 0.313 0.979** 0.868** 0.768** 0.826** 

**Correlation is significant at ≤ 0.01; *correlation is significant at ≤ 0.05. C1= Canopyfall (A. indica); C2= Canopyfall (D. oliveri); C3= Canopyfall (P. biglobosa); 

C4= Canopyfall (P. africana); C5= Canopyfall (V. paradoxa); S1= Stemflow (A. indica); S2= Stemflow (D. oliveri); S3= Stemflow (P. biglobosa); S4= 

Stemflow (P. africana); S5= Stemflow (V. paradoxa); FF=Freefall 
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Table 3: Pearson’s correlational analysis (r) between understory precipitation flux (Canopyfall & Stemflow), and Freefall for 

magnesium nutrient 
 C1   C2 C3 C4 C5 S1 S2 S3 S4 S5 

C2 0.867**          

C3 0.941** 0.773**         

C4 0.989** 0.861** 0.905**        

C5 0.993** 0.867** 0.917** 0.994**       

S1 0.803** 0.623* 0.843** 0.756** 0.779**      

S2 0.991** 0.876** 0.945** 0.985** 0.984** 0.783**     

S3 0.977** 0.821** 0.976** 0.965** 0.963** 0.813** 0.986**    

S4 0.992** 0.870** 0.926** 0.985** 0.990** 0.815** 0.987** 0.966**   

S5 0.951** 0.818** 0.987** 0.912** 0.924** 0.876** 0.949** 0.971** 0.943**  

FF 0.739** 0.724** 0.719** 0.785** 0.778** 0.627* 0.779** 0.765** 0.763** 0.687** 

**Correlation is significant at ≤ 0.01; *correlation is significant at ≤ 0.05. C1= Canopyfall (A. indica); C2=Canopyfall (D. oliveri); C3= Canopyfall (P. 
biglobosa); C4= Canopyfall (P. africana); C5= Canopyfall (V. paradoxa); S1= Stemflow (A. indica); S2= Stemflow (D. oliveri); S3= Stemflow (P. 
biglobosa); S4=Stemflow (P. africana); S5= Stemflow (V. paradoxa); FF= Freefall. 

 

Table 4: Pearson’s correlational analysis (r) between understory precipitation flux (Canopyfall & Stemflow), and Freefall for 

nitrate-nitrogen nutrient 
 C1   C2 C3 C4 C5 S1 S2 S3 S4 S5 

C2 0.448          

C3 0.608* 0.169         

C4 0.804** 0.412 0.390        

C5 0.145 0.187 0.533 -0.128       

S1 0.063 -0.247 0.389 0.154 0.114      

S2 0.030 0.352 0.392 -0.094 0.787** -0.040     

S3 0.472 0.455 0.723** 0.585* 0.360 0.256 0.477    

S4 0.533 0.195 0.551 0.327 0.200 0.030 0.377 0.478   

S5 0.560* 0.439 0.136 0.559* -0.058 0.011 0.062 0.276 0.458  

FF 0.326 0.415 0.019 0.315 0.269 -0.257 0.402 0.214 0.204 0.300 

**Correlation is significant at ≤ 0.01; *correlation is significant at ≤ 0.05. C1= Canopyfall (A. indica); C2=Canopyfall (D. oliveri); C3= Canopyfall (P. 
biglobosa); C4= Canopyfall (P. africana); C5= Canopyfall (V. paradoxa); S1= Stemflow (A. indica); S2= Stemflow (D. oliveri); S3= Stemflow (P. 
biglobosa); S4=Stemflow (P. africana); S5= Stemflow (V. paradoxa); FF= Freefall. 
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Table 5: Pearson’s correlational analysis (r) between understory precipitation flux (Canopyfall & Stemflow), and Freefall for 

phosphate-phosphorus nutrient 
 C1   C2 C3 C4 C5 S1 S2 S3 S4 S5 

C2 0.071          

C3 0.806** 0.155         

C4 0.007 -0.306 -0.010        

C5 0.016 -0.068 0.067 0.578*       

S1 0.373 0.099 0.194 -0.099 -0.108      

S2 0.259 0.157 0.045 0.138 0.323 0.329     

S3 0.055 0.137 0.110 0.439 0.649* -0.078 0.510    

S4 -0.166 0.436 -0.192 0.433 0.524 0.304 0.588* 0.567*   

S5 -0.101 -0.312 0.184 0.373 0.098 -0.242 -0.334 -0.417 -0.183  

FF 0.023 0.721** -0.102 -0.041 0.026 0.122 0.426 0.139 0.598* -0.294 

**Correlation is significant at ≤ 0.01; *correlation is significant at ≤ 0.05. C1= Canopyfall (A. indica); C2=Canopyfall (D. oliveri); C3= Canopyfall 

(P. biglobosa); C4= Canopyfall (P. africana); C5= Canopyfall (V. paradoxa); S1= Stemflow (A. indica); S2= Stemflow (D. oliveri); S3= 

Stemflow (P. biglobosa); S4=Stemflow (P. africana); S5= Stemflow (V. paradoxa); FF= Freefall 
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4

Discussion 

Precipitation largely trickles through 

tree canopies in form of stemflow and 

throughfall (Van Stan et al., 2021). These 

flux corridors, symbolically described as 

“hydrologic highways”, have been 

notably identified as transporters of 

ecologically significant biological and 

non-biological (chemical) content to the 

soil, as they play a strategic role in the 

air-plant-soil continuum (Friesen, 2020; 

Van Stan et al., 2021). Stemflow and 

throughfall therefore, have concomitant 

biogeochemical significance in terrestrial 

ecosystems (Van Stan et al., 2021). This 

study has shown a nutrient return order 

in the canopyfall of A. indica, D. oliveri 
and V. paradoxa and across all the tree 

species stemflow, in the form (K > Ca > 

Mg > NO3-N
- > PO4

3-P). This is 

comparable to Ndakara (2012), who 

reported nutrient returns for stemflow and 

canopyfall in the order (K >Ca >Mg >N >P 

>Na) and somewhat similar to the study of 

Fatoba (1997). 

The nutrient return order of the 

canopyfall of P. africana (Ca > K > 

NO3
-- N > Mg > PO3--P) is comparable 

to the report of Xiangquing et al (2007), 

who identified annual output of nutrients 

in the run-off from young stands in the 

sequence (Ca > K> Mg> N> P). Calcium 

has been implicated in cellular 

mechanisms controlling light-sensitized 

gravitropism in plants, while potassium 

has functional roles such as plant growth, 

metabolism, and development (Roux and 

Serlin, 1987; Etesami et al., 2017; 

Trankner et al., 2018). Equally, potassium 

is involved in the activation of several 

enzymes responsible for plant processes 

such as starch synthesis and energy 

metabolism (White and Karley, 2010; 

Almeida et al., 2015; Etesami et al., 

2017; Trankner et al., 2018). Magnesium 

plays a key role in fundamental processes 

such as photophosphorylation (ATP 

formation), partitioning and utility of 

photoassimilates, including sucrose 

loading in the phloem (Cakmak and 

Yazici, 2010). 

The prominence of potassium, calcium, 

and magnesium as key nutrients in the 

tropical savanna, is clear and is a pointer 

to their ecological roles in soil fertility, 

base content and the structure and 

functioning of tropical vegetation (van 

der Heijden et al., 2014; Lloyd et al., 
2015). In this regard therefore, it has been 

reported that tree species with more 

stemflow partitioning tend to have higher 

stemflow fluxes of potassium (Johnson 

and Lehmann, 2006), just as the potassium 

mobility factor in plants increases its 

leachability in stemflow (Momolli et al., 
2019). 

Understory precipitation (canopyfall 

and stemflow) generally showed 

dominant nutrient returns over freefall. 

This corroborates similar reports from 

several terrestrial ecosystem-based 

studies (Balieiro et al., 2007; Perez-Marin 

and Menezes, 2008; Tan et al., 2018; 

Moslehi et al., 2019; Fadhilah et al., 
2021). For the understory precipitation 

flux group, stemflow had a 

comparatively superior nutrient return 

over canopyfall, which corroborates for 

instance, studies that found higher 

stemflow fluxes of potassium in species 

with more stemflow partitioning (Johnson 

and Lehmann, 2006; Dick et al., 2018; 

Nsien et al., 2021). 

The correlation spectrum within the 

understory precipitation fluxes 

(canopyfall and stemflow) of the five tree 

species for the cationic elements are quite 

notable. Positive correlation between 
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canopyfall and stemflow is possibly due 

to the fact that canopy particulate 

matter, decomposing twigs and branches 

tend to increase nutrient content in 

canopyfall due to exudate washing. 

Furthermore, longer precipitation 

residence in canopies initiates stemflow 

with higher nutrient enrichment, from 

bark tissue leachability (Parker, 1983; 

Cornu et al., 1998; Levia and Herwitz, 

2000; Johnson and Lehmann, 2006; 

Salehi et al., 2016; Van Stan et al., 2017; 

Koyejo et al., 2020). However, the inverse 

relationships identified between the 

canopyfall, stemflow and freefall in D. 
oliveri, P. biglobosa, P. africana and V. 
paradoxa suggest that higher rainfall 

volumes could lead to reduction in 

concentration levels (Momolli et al., 
2019). For the anionic nutrients nitrate-

nitrogen and phosphate-phosphorus, a 

quite converse diverse, multidirectional 

correlational pattern could suggest an 

unpredictability in terms of the effect of 

canopyfall on stemflow. 

 

Conclusion 

The study identified the significance 

of understory canopyfall and stemflow 

precipitation fluxes from tree cover, in 

the nutrient biogeochemistry of the 

tropical savanna ecosystem. This is also 

an indication of the ecological significance 

of tree cover. It is evident that rain-wash 

remains a key, direct nutrient transfer 

vehicle from A. indica, D. oliveri, P. 
biglobosa, P. africana and V. paradoxa 
tree species, to the savanna floor, thus 

contributing to sustainability of soil 

nutrient enrichment and fertility. It is 

indicative therefore, that the sustainable 

maintenance of tropical tree cover in 

woodland savannas and agroforestry 

initiatives, is inevitably the forward 

approach to mitigating ecological 

degradation in terrestrial ecosystems. 
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