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Abstract  

This study employed geographic informa�on systems (GIS) and remote sensing techniques 

to analyze land use and land cover (LULC) changes in Lagos State from 2002 to 2022 and to 

project LULC changes for the year 2050. ENVI 5.3 was u�lized for supervised classifica�on 

via the maximum likelihood technique, categorizing Lagos State into six dis�nct classes: 

built-up areas, bare land, wetlands, forest, grassland, and water bodies. Subsequently, the 

IDRISI-TerrSet so4ware CA-Markov model was employed to predict land use pa7erns for 

the year 2050. The classifica�on accuracies for 2002 and 2022 were 89.87% and 87.50%, 

respec�vely, with kappa coefficients of 0.86 and 0.83, which are considered acceptable. 

From 2002 to 2022, the built-up area increased by 26.6 km², bare land decreased by 110 

km², wetland area decreased by 96 km², forest area decreased by 449 km², grassland area 

increased by 11 km², and water bodies decreased by 133 km². The projec�ons for year 2050 

indicate that from 2022 to 2050, built-up land will increase by 664 km², bare land will 

increase by 0.7 km², wetlands will decrease by 1.5 km², forests will decrease by 7.6 km², 

grasslands will increase by 7 km², and water bodies will decrease by 3 km². The findings of 

this study will assist environmental managers in making well-informed decisions to promote 

resilient urban growth and sustainable development in Lagos State. 
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Introduction 

Urban centres worldwide are 

experiencing rapid development due to 

unprecedented population growth (Wu et 

al., 2012; Mosammam et al., 2017; Pawe 

et al., 2018; Bagheri et al., 2023; Miah et 

al., 2024). This expansion is driven by the 

increasing demand for urban amenities. 

By 2050, 68% of the world’s population is 

projected to reside in metropolitan areas, 

with significant growth expected in Asia 

and Africa (Kookana et al., 2020). 

Lagos State, Nigeria’s largest urban 

center, has experienced remarkable 

growth due to its socioeconomic 

significance (Gandy, 2006; Wang and 

Maduako, 2018). Rapid urban 

development and the formation of 

informal settlements have increased the 

frequency and severity of floods. By 2050, 

urbanization is expected to exacerbate 
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these flooding incidents (Jongman et al., 

2012). Factors such as unplanned 

development, inadequate stormwater 

drainage, and weak enforcement of 

planning laws have contributed to 

flooding in neighborhoods such as Agege, 

Ebute Metta, Mushin, Oshodi-Isolo, 

Apapa, Surulere, Ikeja, Ajeromi-Ifelodun, 

and Alimosho (Adelekan, 2016). 

Deforestation is another major 

environmental issue affecting LULC in 

Lagos State (Okorie, 2012; Azeez, 2023). 

Driven by agriculture, logging, and 

urbanization, deforestation leads to the 

conversion of forested areas into 

agricultural fields, pastures, or urban 

landscapes. This results in habitat 

destruction, carbon emissions, and soil 

erosion (Amaechi et al., 2023; Foley et al., 

2005; Olsson et al., 2019). 

The year 2050 is a crucial milestone 

due to projections of significant 

demographic and environmental changes 

(United Nations, 2018; Wang et al., 2021; 

Enoh et al., 2023). Understanding these 

trends is essential for sustainable 

development planning (Amaechi et al., 

2024). The projections for 2050 offer a 

forward-looking perspective to help 

policymakers and environmental 

managers mitigate the adverse effects of 

rapid urbanization and environmental 

degradation. Lagos has experienced rapid 

physical expansion driven by population 

growth, economic activities, and 

infrastructure development. The demand 

for housing, commercial spaces, and 

transportation networks has led to 

significant land cover changes. 

Many previous studies have focused on 

specific aspects of LULC without 

providing a holistic view that includes 

future projections using advanced 

techniques such as the CA Markov model. 

This study aims to fill this gap by 

analyzing and predicting LULC changes 

adopting remote sensing and GIS 

techniques. GIS is crucial for studying 

LULC changes due to its ability to handle 

large datasets, perform spatial analyses, 

and visualize complex data patterns 

(Okoduwa and Amaechi, 2024). Scholars 

have widely used GIS to map urban 

expansion, analyze environmental 

impacts, and project future land cover 

scenarios (Ahmad et al., 2017; El-Hattab, 

2016; Fenta et al., 2017, Amaechi et al., 

2024). For instance, Karakus et al. (2015) 

and Zhou et al. (2020) utilized GIS to 

identify urbanization trends and support 

decision-making processes. Domingo et 

al. (2021) and Akdeniz et al. (2022) 

demonstrated how GIS can aid in 

sustainable urban planning by providing 

spatially explicit information. 

This study aims to predict LULC 

changes in Lagos State with the following 

objectives: (1) classify LULC for the years 

2002 and 2022, (2) determine the net 

change during this period, and (3) predict 

LULC for 2050 adopting the CA Markov 

model. The results will be instrumental in 

environmental management and in 

guiding relevant governance policies for 

sustainable development in Lagos State. 

 

Materials and Methods 

Description of the Study Area 

Lagos State (Figure 1) lies in the 

southwestern part of Nigeria. It is situated 

within Latitudes 6o 22′N and 6o 45′N and 

Longitudes 2o 42′E and 4o 22′E (Atomode, 

2021). It is the smallest state in the 

Federation and occupies an area of 3,577 

square kilometers, of which 22% or 787 

square kilometers are made up of Lagoons 

and Creeks (Akanni, 2010; Osoba, 2012). 

Additionally, Lagos State is bordered by 
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the Republic of Benin in the West, Ogun 

State in the North and East, and the 

Atlantic Ocean in the South (Onilude and 

Vaz, 2021). Agege, Alimosho, Apapa, 

Ifako-Ijaye, Ikeja, Kosofe, Mushin, 

Oshodi-Isolo, Somolu, Eti-Osa, Lagos 

Island, Lagos Mainland, Surulere, Ojo, 

Ajeromi-Ifelodun, Amuwo-Odofin, 

Badagry, Ikorodu, Ibeju-Lekki, and Epe 

are among the 20 local government areas 

that make up Lagos State (Amaechi et al., 

2024). 

Fig. 1: Map of the study area (Lagos State) 

 

Lagos has been expanding since the 

colonial era (Agbola and Agunbiade, 

2009), and it is expected that by 2025, it 

will have a population of 18.8 million, 

surpassing several cities across the world 

(Heilig, 2012). Lagos is a commercial 

center with a seaport that functions as an 

international commerce hub (Williams, 

2008). Thus, Lagos is the economic hub of 

Nigeria, accounting for 85% of the 

industrial sector, 65% of the financial 

sector, and 75% of the workforce 

(Ogunbiyi, 2011, Onilude and Vaz, 2021). 

 

Data Acquisition  

Landsat 5 ETM+ (Enhance Thematic 

Mapper plus) (2002) and Sentinel 2 (2022) 

data were utilized in this study. The data 

were collected using the Google Earth 

Engine. To ensure high image quality, 

only images with less than 10% land and 

scene cloud cover were selected for 

download. 

Software Utilized 

ENVI 5.3 was used for image 

preprocessing, image classification, 

accuracy assessment, postclassification 

processing, thematic change detection, 
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and statistical analysis (Amaechi et al., 

2024). ArcGIS 10.3 was used for editing 

the boundaries of the study area, 

conducting postclassification processing, 

designing map layouts, and creating 

visualizations. For future projections, CA 

Markov Model in IDRISI-TerrSet 17.0 

software was utilized. The primary aim of 

the Markov model is to predict the extent 

of land use alterations and assess future 

land development stability within a 

particular region of interest in the form of 

a matrix, as presented in Table 3 (Hamad 

et al., 2018). By incorporating the CA-

Markov model from IDRISI TerrSet 17.0 

software into the study, seamless 

integration of cellular automaton filters 

and Markov processes was achieved. The 

prediction of land use change state was 

accomplished through the utilization of 

conversion tables (transition matrix) and 

the conditional probability derived from 

the conversion map. The study flowchart 

for LULC modeling is shown in Figure 2. 

Image Preprocessing 

Andualem et al. (2018) emphasized the 

significance of preprocessing satellite 

images for change detection. This crucial 

step aims to eliminate noise and enhance 

the interpretability of image data, which is 

essential for conducting time series 

analysis (Yichun et al., 2008). For this 

study, preprocessing operations were 

adopted, which included radiometric and 

atmospheric correction, as well as image 

enhancement and masking of the study 

area (Igben and Eregare, 2022). These 

operations were performed using the 

ENVI 5.3 FLAASH tool. 

Image Classification 

Maximum likelihood supervised 

classification was used to categorize the 

Landsat and Sentinel-2 images into six 

classes: built-up areas, bare land, water 

bodies, wetlands, grassland, and 

forestland (Table 1). For this process, 

training signature samples were carefully 

selected. Based on these samples, the 

study area was classified into distinct 

LULC classes. Various band 

combinations were utilized to enhance the 

visual interpretation of these classes in the 

images. 

 

 

Table 1: LULC classification names, descriptions, and numbers of trained samples for each 

class of the Landsat and Sentinel datasets 

Class Description Number of samples 

(2002) 

Number of samples 

(2022) 

Built-up Area Areas with buildings, 

and infrastructure. 

67 56 

Bare land Land that is devoid of 

significant vegetation. 

45 38 

Wetland Water-saturated area. 54 65 

Forest Land covered 

predominantly by trees. 

53 67 

Grassland Land dominated by 

grasses with few or no 

trees present. 

39 43 

Water bodies Lakes and rivers. 35 34 
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Assessment of Accuracy 

With the aid of the ground truth image 

tool and confusion matrix in the ENVI 

software, the accuracy of the classified 

images from 2002 and 2022 was 

evaluated. This assessment technique 

compares the classified land cover classes 

with the ground truth data using reference 

data based on Comber's (2013) 

methodology. The findings include the 

kappa coefficient, which rates 

classification accuracy on a scale from 0 

to 1, as well as overall accuracy, 

producer's accuracy, and user's accuracy 

(Table 2). High-resolution Google Earth 

images for each year served as the basis of 

ground truth data for this investigation 

(Amaechi et al., 2024). 

 

Table 2: Accuracy Assessment: User, Producer, Overall Accuracy, Kappa Coefficient. 
Class User accuracy Producer accuracy User accuracy Producer accuracy 

 2002  2022  

Built -up 92.41 94.14 92.45 93.91 

Bare land 94.13 97.70 85.75 87.39 

Wetland 94.76 95.35 86.61 88.30 

Forestland 88.37 89.10 84.78 87.85 

Grassland 91.87 92.65 85.87 86.87 

Water bodies 83.65 85.32 89.34 87.26 

Overall Accuracy (%) 89.87  87.50  

Kappa Coefficient 0.86  0.83  

 

Table 3: Probability Matrix 
 Cl. 1 Cl. 2 Cl. 3 Cl. 4 Cl. 5 Cl. 6 

Cl. 1 0.0000 0.2000 0.2000 0.2000 0.2000 0.2000 

Cl. 2 0.6014 0.2052 0.0001 0.1500 0.0420 0.0013 

Cl. 3 0.1781 0.1711 0.0009 0.4509 0.1707 0.0283 

Cl. 4 0.1873 0.1777 0.0007 0.4593 0.1730 0.0019 

Cl. 5 0.2991 0.2337 0.0006 0.3500 0.1152 0.0014 

Cl. 6 : 0.0757 0.0496 0.0036 0.1242 0.0122 0.7347 

where Cl 1 = built-up land, Cl 2 = bare land, Cl 3 = wetland, Cl 4 = forestland, Cl 5 = grassland 

and Cl 6 = water bodies. 

 

Results and Discussion 

Table 4 shows the LULC classes in 

Lagos from 2002–2050. In 2002, the built-

up area covered 737 km2, representing 

20% of the total land area, which 

increased to 1,514 km2, representing 42% 

of the total land area in 2022. Bare land, in 

2002, covered an area of 161 km2, 

representing 4% of the total land area, 

which decreased to 51 km2, representing 

1% of the total land area in 2022. In 2002, 

wetlands covered an area of 158 km2, 

representing 4% of the land area, which 

further decreased to 62 km2, representing 

2% of the land area in 2022. Furthermore, 

forests in 2002 covered an area of 1,232 

km2, representing 34% of the total land 

area, which decreased to 783 km2, 

representing 22% of the total land area in 

2022. In 2002, grassland covered an area 

of 662 km2, representing 18% of the total 

land area, which increased to 673 km2, 

representing 19% of the total land area in 

2022. The water bodies in 2002 covered 

an area of 651 km2, representing 18% of 
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the land area, which decreased to 518 km2, 

representing 14% of the land area in 2022. 

For the projected year 2050, the built-up 

area will occupy an area of 2,178 km2, 

representing 60% of the land area, and 

bare land will occupy an area of 76 km2, 

representing 2% of the land area. 

Wetlands will occupy an area of 7 km2, 

representing less than 1% of the land area; 

forests will occupy an area of 510 km2, 

representing 14% of the land area; 

grasslands will occupy an area of 420 km2, 

representing 12% of the land area; finally, 

water bodies will occupy an area of 410 

km2, representing 11% of the land area. 

 

Table 4: LULC change of Lagos State: 2002 to 2022 and Future Projection (2050) 
LULC Types Total Area covered for each year in Km2 and percentage (%)  

2002 % 2022 % 2050 % 

Built up 737 20% 1514 42% 2178 60% 

Bare land 161 4% 51 1% 76 2% 

Wetland 158 4% 62 2% 7 0% 

Forest 1232 34% 783 22% 510 14% 

Grassland 662 18% 673 19% 420 12% 

Water bodies 651 18% 518 14% 410 11% 

 

Table 5 presents comprehensive LULC 

net changes from 2002–2050. From 2002–

2022, the built-up class increased by 

21.6% (777 km2). Bare land decreased by 

3.1% (110 km2). Wetland decreased by 

2.7% (96 km2), forest decreased by 12.5% 

(449 km2), grassland increased by 0.3% 

(11 km2), and water bodies decreased by 

3.7% (133 km2). From 2022–2050, the 

built-up class increased by 18.4% (664 

km2). Bare land increased by 0.7% (25 

km2). Wetland decreased by 1.5% (55 

km2), forest decreased by 7.6% (273 km2), 

grassland decreased by 7% (253 km2), and 

water bodies decreased by 3% (108 km2). 

 

Table 5: LULC net change in km2 and percentage (%) 
LULC Types Net change 

2002-2022 (km2) 

Net change 

2002-2022 (%) 

Net change 

2022-2050 (km2) 

Net change 

2022-2050 (%) 

Built up 777 21.6 664 18.4 

Bare land -110 -3.1 25 0.7 

Wetland -96 -2.7 -55 -1.5 

Forest -449 -12.5 -273 -7.6 

Grassland 11 0.3 -253 -7.0 

Water bodies -133 -3.7 -108 -3.0 

 

The study’s LULC geospatial map 

(Figure 3) for Lagos State in 2002 

indicated built-up areas within the Agege, 

Ifako, Mushin, Mainland, Etiosa, and 

Oshodi local government areas. Bare land 

patches can be observed in Ojo and 

Badagry. Wetlands occur in the Kosofe 

and Eastern Epe regions. Forestland was 

the most common type of land cover 

feature, with denser occurrences in Epe 

and Ibeju/Lekki. Grassland was primarily 

observed in the Epe area. Grassland was 

also observed in Badagry and Ojo. Water 
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bodies occurred in the Epe, Lagos Island, 

and Ibeju-Lekki local government areas. 

Furthermore, the findings of the LULC 

map of Lagos State in 2022 (Figure 4) 

revealed more built-up areas occurring 

within Ojo, Agege, Ifako, Mushin, 

Mainland, Etiosa, and Oshodi, with some 

built-up areas in parts of Obeju-Lekki, 

Badagry and Epe. More barren land 

occurs in the northern region of Kosofe, 

and the eastern region of Ibeju-Lekki. 

Areas covered with wetlands reduced in 

2022, as built-up areas are rapidly 

developing, leading to a reduction in 

formerly visible wetlands. The dense 

forestland observed in 2002 within the 

Epe and Ibeju/Lekki regions drastically 

decreased as built-up land began to occur 

within both local government areas. 

Grassland areas were formerly 

observed on the Epe axis in 2002 and 

decreased in size due to built-up areas. 

Reduced amounts of grassland area were 

observed in Ibeju-Lekki, Epe, and 

Ikorodu. Water bodies largely occurred in 

the regions of the Epe, Lagos Island, and 

Ibeju-Lekki. Wetlands have given way to 

water bodies completely in the eastern 

region of the Epe. In addition, the wetland 

observed in 2002 in Kosofe completely 

disappeared by 2022 (Figure 4). Factors 

that must have led to the reduction in 

forest cover between 2002 and 2022 

include population growth and 

urbanization (Musetsho et al., 2021), 

agricultural expansion (Lambin and 

Meyfroidt, 2011), infrastructure 

development (Laurance et al., 2009), 

deforestation, and forest degradation 

(Amaechi et al., 2023). 

Future predictions for LULC for Lagos 

State in 2050 (Figure 5) revealed a 

massive built-up area within all the 

respective local government areas of 

Lagos State. Some patches of grassland 

are projected to occur within the Ibeju-

Lekki and Epe regions (Figure 5). The 

Lagos population is expected to exceed 30 

million by 2030 and reach over 60 million 

by 2050 (Enoh et al., 2023). With this 

increase in population, it is projected that 

by 2050, Lagos will become the world's 

third largest megacity after selected cities 

in China and India (UN-Habitat, 2006; 

Faisal Koko et al., 2021). 

 

 
Fig. 3: Land Use-Land cover geospatial map for Lagos State 2002 
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Fig. 4: Land Use-Land cover geospatial map for Lagos State 2022 

 

 
Fig. 5: Land Use-Land cover geospatial map for Lagos State 2050 

 

Koko et al. (2020) projected LULC 

geospatial maps for 2050 in Zaria city, 

Nigeria, and indicated that urbanization, 

deforestation, and the expansion of 

agricultural activities will likely continue 

to transform forested areas into built-up 

land over the next 30 years. Similarly, 

research by Khawaldah et al. (2020) in the 

Irbid Governorate forecasts an ongoing 

increase in built-up areas from 2015 to 

2030 and 2050. Another study by Rani et 

al. (2023) in Bathinda predicts a decrease 

in bare land by 2050. Additionally, 

wetland areas are expected to shrink, 

which will pose challenges for irrigation 

and groundwater reservoir sustainability. 

Debnath et al. (2023) reported that the 

amount of agricultural land in the Koch 

Bihar urban agglomeration would decline 

significantly by 2050, while the built-up 

area would grow dramatically. 

Without measures to curb 

unsustainable urban development, 

ongoing expansion threatens to reduce the 

nation's forest coverage, hindering 

progress toward achieving Sustainable 

Development Goals (SDGs) 11 

(sustainable cities and communities), 13 
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(climate action), and 15 (life on land) 

(Amaechi et al., 2024). In Lagos State, it 

is crucial to manage rapid urban growth 

and expansion to balance urban 

development with the preservation of the 

natural environment. 

 

Conclusion 

By 2050, the state of Lagos will 

become an almost completely built-up 

area, which will lead to poor air and water 

quality, urban heat islands, and 

biodiversity loss. Implementing and 

enforcing efficient environmental 

planning rules in Lagos is crucial to 

curbing a city's urban sprawl. It should be 

mandatory for homeowners associations 

to ensure the planting of trees and grass. 

Building taller houses to allow for better 

vertical land utilization enables the 

efficient and sustainable use of land, helps 

to conserve land resources, reduces urban 

sprawl and helps to maintain a balance 

between built-up areas and natural 

elements. The implementation of 

successful conservation strategies to 

safeguard forested regions is pivotal for 

preserving biodiversity. 
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